На правах рукописи

Mul

Ившин Камиль Анатольевич

## СУПРАМОЛЕКУЛЯРНАЯ ОРГАНИЗАЦИЯ И ПРИРОДА МЕЖМОЛЕКУЛЯРНЫХ ВЗАИМОДЕЙСТВИЙ В КОМПЛЕКСАХ С ПЕРЕНОСОМ ЗАРЯДА НА ОСНОВЕ ПОЛИЦИКЛИЧЕСКИХ АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ И РЯДА АКЦЕПТОРОВ ХИНОИДНОЙ СТРУКТУРЫ

Специальность 1.4.4. Физическая химия

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук Работа выполнена в Институте органической и физической химии им. А.Е. Арбузова – обособленном структурном подразделении Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук»

| Научный руководитель:  | доктор химических наук                                     |  |  |
|------------------------|------------------------------------------------------------|--|--|
|                        | Катаева Ольга Николаевна                                   |  |  |
| Официальные оппоненты: | доктор химических наук, профессор, профессор РАН           |  |  |
|                        | Хрусталёв Виктор Николаевич                                |  |  |
|                        | Заведующий кафедрой общей и неорганической химии,          |  |  |
|                        | Директор Объединенного института химических исследований   |  |  |
|                        | Российского университета дружбы народов им. Патриса        |  |  |
|                        | Лумумбы, г. Москва                                         |  |  |
|                        | кандидат химических наук                                   |  |  |
|                        | Вологжанина Анна Владимировна                              |  |  |
|                        | старший научный сотрудник лаборатории рентгеноструктурных  |  |  |
|                        | исследований Института элементоорганических соединений им. |  |  |
|                        | А.Н. Несмеянова Российской академии наук, г. Москва        |  |  |
| Ведущая организация:   | Федеральное государственное бюджетное учреждение науки     |  |  |
|                        | Институт « <b>Международный томографический центр</b> »    |  |  |
|                        | Сибирского јтделения Российской академии наук, г.          |  |  |
|                        | Новосибирск.                                               |  |  |

Защита диссертации состоится 29 мая 2024 года в 14 часов на заседании диссертационного совета 24.1.225.01 при Федеральном государственном бюджетном учреждении науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук» по адресу: 420088, г. Казань, ул. Академика Арбузова, д. 8, ИОФХ им. А.Е. Арбузова – обособленное структурное подразделение ФИЦ КазНЦ РАН, большой конференц-зал.

С диссертацией можно ознакомиться в научной библиотеке ИОФХ им. А.Е. Арбузова – обособленного структурного подразделения ФИЦ КазНЦ РАН и на сайте http://www.iopc.ru/.

Отзывы на автореферат просим присылать по адресу: 420088, г. Казань, ул. Академика Арбузова, д. 8, ИОФХ им. А.Е. Арбузова, ученому секретарю совета, e-mail: toropchina@iopc.ru.

Автореферат разослан 9 апреля 2024 г.

Ученый секретарь диссертационного совета,

кандидат химических наук

Topos

Торопчина А.В.

#### ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

**Актуальность работы и степень разработанности темы исследования**. Органические функциональные материалы на основе делокализированных π-систем вызывают большой интерес у исследователей в силу своих уникальных физических свойств, благодаря которым они находят применение в молекулярной электронике при создании органических полупроводников, фотодиодов, солнечных батарей, сенсорных элементов, молекулярных интерфейсов, в медицине при разработке контрастных агентов для магнитно-резонансной томографии, фотосенсибилизаторов для фотодинамической терапии рака и прочее.

Наиболее перспективным классом органических молекулярных материалов являются многокомпонентные кристаллы (или сокристаллы) комплексов с переносом заряда. В результате объединения донорных и акцепторных молекул в одном кристалле можно получить функциональные свойства, не характерные для кристаллов отдельных компонентов. Кроме того, большое разнообразие сравнительно простых донорных и акцепторных соединений предоставляет широкие возможности создания новых многокомпонентных систем. Наряду с этим, главными преимуществами инженерии сокристаллов по сравнению с традиционным технологиями являются:

1) отказ от сложных и дорогостоящих процедур синтеза: сокристаллы могут быть успешно получены методом контролируемой сублимации компонентов или путем их выращивания из раствора;

2) возможность тонкой настройки функциональных параметров материалов путем выбора донорных и акцепторных молекул с учетом их размеров, топологических характеристик, наличия функциональных групп. При этом получение сокристаллов может идти как за счет слабых нековалентных взаимодействий, так и за счет химических превращений донорных и акцепторных составляющих.

Особенно важным аспектом при создании органических функциональных материалов является управление супрамолекулярной организацией донорных и акцепторных компонентов в сокристаллах и установление взаимосвязи между структурой многокомпонентных кристаллов, межмолекулярными взаимодействиями и функциональными свойствами.

Несмотря на большое количество известных сокристаллов комплексов с переносом заряда, до сих пор проблематично предсказать их кристаллическую упаковку, зная структуру отдельных компонентов. Причиной этих трудностей является то, что супрамолекулярная организация молекул в кристалле определяется тонким балансом множества межмолекулярных взаимодействий, включая слабые дисперсионные и  $\pi \cdots \pi$  взаимодействия, водородные связи, галоген-галоген взаимодействия и другие.

Таким образом, необходимы более глубокие исследования природы нековалентных взаимодействий, их силы и направленности; механизмов переноса заряда в сокристаллах и факторов, определяющих подвижность носителей заряда; взаимосвязи между межмолекулярными взаимодействиями, кристаллической упаковкой и физическими свойствами

соединений. Решение этих проблем является актуальной задачей, которая обеспечит рациональный дизайн сокристаллов с заданными свойствами.

**Объекты и методы исследования.** Выбор донорных и акцепторных составляющих предоставил возможность получить сокристаллы с различной величиной переноса заряда, а вариация относительных размеров компонентов позволила проанализировать основные межмолекулярные взаимодействия, влияющие на супрамолекулярную организацию молекул в сокристаллах.

В качестве донорных составляющих для получения сокристаллов нами были выбраны ароматические углеводороды различного размера и топологии: толуол, антрацен, тетрацен, хризен, а также фталоцианин марганца (MnPc), как представитель металлсодержащих полициклических ароматических соединений.

В качестве акцепторных соединений использовались как широко известные хиноновые молекулы 7,7,8,8-тетрацианохинодиметан (TCNQ) и его монофтор-, дифтор- и тетрафторзамещенные производные (F<sub>1</sub>TCNQ, F<sub>2</sub>TCNQ и F<sub>4</sub>TCNQ, соответственно), так и совершенно новый акцептор –октафторантрахинон (перфторантрахинон, PFAQ).

В ходе выполнения исследований по теме диссертации применялись физические и физикохимические методы, включая монокристальный и порошковый рентгеноструктурный анализ, электронную и ИК спектроскопию, дифференциальную сканирующую калориметрию (ДСК), циклическую и дифференциальную импульсную вольтамперометрию, ЭПР спектроскопию, измерения намагниченности и статической магнитной восприимчивости, а также проводились квантово-химические расчеты в программах Crystal, Gaussian и AIMall.

**Цель и задачи работы.** Целью работы является установление взаимосвязи между межмолекулярными взаимодействиями, супрамолекулярной организацией молекул, величиной переноса заряда и физическими свойствами сокристаллов на основе ароматических органических и металлсодержащих соединений и хиноновых производных.

Достижение поставленных целей включает решение следующих задач:

1. Установление закономерностей кристаллического строения ряда бикомпонентных сокристаллов с переносом заряда на основе PFAQ, F<sub>1</sub>TCNQ, F<sub>2</sub>TCNQ, F<sub>4</sub>TCNQ и ароматических углеводородов различного размера и топологии. Установление закономерностей строения ряда сокристаллов с переносом заряда на основе TCNQ, F<sub>4</sub>TCNQ и MnPc. Определение основных факторов, влияющих на супрамолекулярную организацию молекул в сокристаллах.

2. Оценка механизма переноса заряда и количества переноса заряда в выше указанных системах на основе структурных данных, спектроскопических методов и прецизионных рентгеновских экспериментов в сочетании с квантово-химическими расчетами. Изучение электронной структуры, электрохимических и оптических свойств.

3. Исследование распределения теоретической статической деформационной электронной плотности сокристаллов антрацен/F<sub>2</sub>TCNQ, тетрацен/F<sub>2</sub>TCNQ и хризен/F<sub>2</sub>TCNQ с целью выяснения природы нековалентных взаимодействий.

4. Исследование распределения экспериментальной статической деформационной электронной плотности в сокристалле тетрацен/F<sub>4</sub>TCNQ с целью выяснения природы нековалентных взаимодействий.

5. Изучение электронного строения и магнитных свойств многокомпонентных кристаллов с переносом заряда на основе TCNQ, F<sub>4</sub>TCNQ и MnPc.

Научная новизна. Получены и охарактеризованы новые сокристаллы комплексов с переносом заряда антрацен/PFAQ, тетрацен/PFAQ, толуол/ $F_1$ TCNQ, толуол/ $F_2$ TCNQ, антрацен/F<sub>2</sub>TCNQ, тетрацен/F<sub>2</sub>TCNQ, толуол/F<sub>4</sub>TCNQ, хризен/F<sub>2</sub>TCNQ, исследованы закономерности супрамолекулярной организации донорных и акцепторных компонентов в сокристаллах, оценена величина переноса заряда. Выявлено влияние относительных размеров компонентов сокристалла, топологии молекул, взаимодействий в подсистемах акцептор-акцептор и акцептор-донор на кристаллическое строение сокристаллов.

Впервые исследовано распределение теоретической статической деформационной электронной плотности в сокристаллах антрацен/ $F_2$ TCNQ, тетрацен/ $F_2$ TCNQ и хризен/ $F_2$ TCNQ, полученное с помощью квантово-химических расчётов и топологического анализа и распределение экспериментальной статической деформационной электронной плотности в сокристалле тетрацен/ $F_4$ TCNQ, полученной с помощью топологического анализа на основе данных из прецизионного рентгеноструктурного эксперимента; исследованы межмолекулярные взаимодействия и механизм переноса заряда.

Установлено строение первых комплексов сокристаллов MnPc·2(H<sub>2</sub>O) с анион-радикалами TCNQ<sup>--</sup> и F<sub>4</sub>TCNQ<sup>--</sup> Показано, что данные комплексы имеют необычную супрамолекулярную организацию в кристалле за счет C-H…*π* взаимодействий.

Установлено строение новых комплексов, полученных в результате реакции MnPc с F<sub>4</sub>TCNQ, сопровождающееся химическим превращением молекулы акцептора в новый 4-(дицианометанидо)тетрафторбензоат дианион, изучены магнитные свойства термодинамически стабильного комплекса.

**Теоретическая и практическая значимость работы.** Теоретическая значимость работы заключается в получении результатов фундаментального характера в области дизайна сокристаллов по изучению природы межмолекулярных взаимодействий и исследованию взаимосвязи между супрамолекулярной организацией, межмолекулярными взаимодействиями, кристаллической структурой, переносом заряда и физическими свойствами. Полученные в работе результаты исследования могут быть использованы для дизайна новых органических функциональных материалов.

#### Положения, выносимые на защиту

1. Молекулярная и кристаллическая структура серии новых сокристаллов комплексов с переносом заряда на основе полициклических ароматических углеводородов в качестве доноров и фторсодержащих производных TCNQ и PFAQ в качестве акцепторных молекул.

2. Закономерности влияния топологии донорных молекул и относительного размера донорных и акцепторных составляющих, F…F взаимодействий и слабых водородных связей на супрамолекулярную организацию сокристалла и величину переноса заряда.

3. Распределение экспериментальной электронной плотности в сокристалле тетрацен/F<sub>4</sub>TCNQ, демонстрирующее природу взаимодействий молекул в сокристалле.

4. Распределение теоретической электронной плотности в сокристаллах антрацен/F<sub>2</sub>TCNQ, тетрацен/F<sub>2</sub>TCNQ и хризен/F<sub>2</sub>TCNQ и природа взаимодействий молекул в сокристаллах

5. Молекулярная и кристаллическая структура продуктов реакции MnPc с акцепторными молекулами TCNQ и F<sub>4</sub>TCNQ, структура комплекса MnPc с 4-(дицианометанидо)тетрафторбензоат дианионом.

6. Супрамолекулярная организация сокристаллов Mn<sup>III</sup>Pc·2(H<sub>2</sub>O) с анион-радикалами TCNQ<sup>•-</sup> и F<sub>4</sub>TCNQ<sup>•-</sup>, их магнитные свойства.

Степень достоверности результатов. Достоверность результатов проведённых исследований основана на использовании современных физических методов, в том числе рентгеноструктурного анализа монокристаллов, выполненного на современных приборах при температурах от 100 К до 293 К, и подтверждена низкими значениями факторов расходимости и результатами квантово-химических расчётов.

Апробация работы. Результаты диссертационной работы докладывались и обсуждались на IX Национальной кристаллохимической конференции (Суздаль, 2018), на научной конференции «Динамические процессы в химии элементоорганических соединений» (Казань, 2018), XXII Всероссийской конференции молодых ученых (с международным участием) (Нижний Новгород, 2019), Динамические процессы в химии элементоорганических соединений (Казань, 2020), X Национальная кристаллохимическая конференция (Приэльбрусье, 2021), IV Байкальский Материаловедческий форум (Улан-Удэ, 2022), две итоговые научные конференции Федерального исследовательского центра «Казанский Научный Центр Российской Акамедии Наук» (Казань, 2020 и 2022), а также были заочно представлены на научной конференции «XI International Conference on Chemistry for Young Scientists "Mendeleev 2019"» (Санкт-Петербург, 2019).

Публикации. По материалам диссертации опубликованы 6 статей в журналах, входящих в перечень ВАК РФ и тезисы 6 докладов, которые написаны в соавторстве с доктором химических наук О.Н. Катаевой, осуществлявшей руководство исследованиями, а также д.х.н. Ш.К. Латыповым, д.х.н. В.А. Альфонсовым, д.х.н. Ю.Г. Будниковой, к.х.н. К.Е. Метлушкой, коллегами из IFW Dresden V. Kataev, M. Knupfer, B. Büchner, A. Alfonsov. Основная экспериментальная работа, обсуждение результатов и выводы сделаны самим автором.

**Объем и структура работы**. Диссертационная работа состоит из введения, трех глав, заключения, списка условных обозначений и сокращений, списка использованных источников и приложения. Общий объем диссертации составляет 157 страниц, включает 12 таблиц, 5 схем и 64 рисунка. Библиографический список насчитывает 261 ссылку.

**Личный вклад автора**. Автор диссертации самостоятельно анализировал литературные данные, принимал участие в постановке цели и задач исследования. Все экспериментальные и расчётные данные, приведенные в диссертационной работе, получены автором лично или при его непосредственном участии в процессах выполнения рентгеноструктурного анализа, проведения квантово-химических расчётов. Также личный вклад автора заключается в обсуждении полученных результатов, формулировке научных выводов, подготовке публикаций по теме исследования и апробации результатов работы.

Работа выполнена в лаборатории дифракционных методов исследований Института органической и физической химии им. А.Е. Арбузова – обособленного структурного подразделения Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук» в рамках государственного задания ФИЦ КазНЦ РАН. Работа проведена при финансовой поддержке гранта РНФ № 21-13-00220.

Автор искренне благодарен научному руководителю диссертационной работы д.х.н. Катаевой О.Н. за руководство, неоценимую помощь и поддержку, оказанную на всех этапах работы. Автор признателен коллективу лаборатории дифракционных методов исследований за поддержку и ценные советы. Автор выражает благодарность лаборатории МКС и в частности к.х.н. Метлушке К.Е. за синтез и кристаллизацию соединений; д.х.н. Латыпову Ш.К. за проведение квантово-химических расчётов; сотрудникам лаборатории ЭХС Хризанфоровой В.В. и Хризанфорову М.Н. за проведение экспериментов по циклической и дифференциальной импульсной вольтамперометрии; к.х.н. Файзуллину Р.Р. за помощь в исследовании распределения электронной плотности, коллегам V. Kataev, M. Knupfer, B. Büchner, Y. Krupskaya, А. Alfonsov и S. Avdoshenko из IFW Dresden за спектроскопические исследования, измерения магнитных свойств и теоретический расчёт зонной структуры соединений.

#### ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность, сформулированы цель и задачи диссертационной работы, представлены научная новизна проведенных исследований, их теоретическая и практическая значимость.

В первой главе представлен литературный обзор, посвященный типам межмолекулярных взаимодействий и супрамолекулярной организации органических сокристаллов, а также зависимости физических свойств от переноса заряда и супрамолекулярной организации молекул в сокристаллах.

Вторая глава представляет собой экспериментальную часть, в которой приведены методы кристаллизации соединений, а также описание использованных методов исследования.

**Третья глава** посвящена обсуждению полученных результатов. В ней проведен анализ структур и свойств соединений, полученных широким спектром современных методов, в том числе теоретическое исследование физических свойств некоторых сокристаллов.

### Комплексы полициклических ароматических углеводородов с новым акцептором - PFAQ

Были получены и исследованы кристаллы индивидуального перфторантрахинона (PFAQ) и сокристаллы комплексов с переносом заряда антрацен/PFAQ и тетрацен/PFAQ.



PFAQ в кристалле в двух проекциях.

Молекула PFAQ имеет неплоскую структуру в кристалле индивидуального соединения (рис.1), вероятно, вследствие кулоновского отталкивания между соседними атомами кислорода и фтора, расстояние между которыми 2.649(2) – 2.677(2) Å. равно Эти внутримолекулярные взаимодействия приводят к тому, что центральное хиноновое кольцо принимает конформацию ванны: атомы углерода С1 и С8 выходят из плоскости остальных четырех атомов углерода на расстояния 0.190(3) и 0.259(2) Å, а атомы Рисунок 1. Геометрия молекулы кислорода при них – на расстояния 0.449(3) и 0.663(3) Å, соответственно.

Квантово-химические расчёты методом теории функционала плотности (DFT-расчёты) показали, что в случае молекулы PFAQ наиболее энергетически выгодной является неплоская

структура, наблюдаемая в кристалле. Однако разница энергий между плоской и неплоской структурой мала и равна 0.75 ккал/моль.

PFAO c антраценом и тетраценом образует сокристаллы антрацен/PFAQ (1, 2) и тетрацен/PFAQ (3) состава 1:1 с чередованием донорных и акцепторных молекул. В сокристаллах молекула PFAQ принимает плоскую геометрию, благоприятную для реализации плотной кристаллической упаковки и  $\pi \cdots \pi$  взаимодействий.

Молекулы в стопках практически параллельны в обоих комплексах, расстояние между плоскостями, вычисленное как расстояние между центроидом центрального кольца молекулы PFAQ и плоскостью донора, лежит в интервале 3.465(3)-3.521(3) Å для комплекса антрацена и 3.354(2) Å для комплекса тетрацена. В комплексе тетрацен/PFAQ наблюдается оптимальное для



Рисунок 2. Взаимная ориентация молекул донора и акцептора в стопках в проекции на плоскость молекулы донора в сокристаллах тетрацен/PFAO (a) и антрацен/PFAQ (б).

донорно-акцепторных *п*...*п* взаимодействий ориентация «кольцо над связью» (рис.2a), в комплексе антрацен/PFAQ наблюдается значительный сдвиг в направлении, перпендикулярном длинным осям молекул (рис.26). Результат оптимизации геометрии димеров PFAQ-антрацен и PFAQ-тетрацен показал ориентацию по типу «кольцо над связью» для обоих димеров, что соответствует взаимной ориентации молекулы донора и акцептора в сокристалле тетрацен/PFAQ, но сильно отличается от ориентации, наблюдаемой в сокристалле антрацен/PFAQ.

Таким образом, в соответствии с более сильными донорными свойствами тетрацена, имеющего более протяженную ароматическую систему по сравнению с антраценом, наблюдается более эффективное донорно-акцепторное  $\pi \cdots \pi$  взаимодействие, что видно из расстояний между плоскостями донора и акцептора в кристаллах и их взаимной ориентации.

Молекулы из соседних стопок во всех соединениях связаны посредством множественных

С–Н…О и С–Н…F взаимодействий (рис.3). Таким образом, донорные и акцепторные молекулы образуют цепочки, перпендикулярные длинной оси молекул. В комплексе антрацен/PFAQ наблюдаются множественные акцептор-акцептор F…F взаимодействия, которые отсутствуют в комплексе тетрацен/PFAQ. Причиной этого является размер молекул доноров. Наибольший размер молекулы PFAQ составляет 10.1 Å. Размер молекулы антрацена 9.2 Å, меньше, чем акцептора, а молекулы тетрацена 11.5 Å, немного больше. Таким образом, молекула тетрацена экранирует молекулу PFAQ в кристалле, препятствуя F…F взаимодействиям.



**Рисунок 3**. Фрагмент кристаллической упаковки соединения антрацен/PFAQ (а) и тетрацен/PFAQ (б), демонстрирующий межмолекулярные С–Н···· О и С–Н···· F взаимодействия.

Наличие акцептор-акцептор взаимодействий приводит к ёлочной кристаллической упаковке в сокристалле антрацен/PFAQ, тогда как в сокристалле тетрацен/PFAQ стопки параллельны между собой и наблюдается слоевая структура.

Таким образом, в комплексе тетрацен/PFAQ преобладают донорно-акцепторные  $\pi$ ··· $\pi$  взаимодействия, а в комплексе антрацен/PFAQ кристаллическая упаковка является балансом множественных взаимодействий разного типа, но примерно равной энергии, что приводит к образованию полиморфов: моноклинный полиморф (1) кристаллизуется в пространственной группе  $P_{1/c}$ , триклинный полиморф (2) – в пространственной группе  $P_{-1}$ . Параметры элементарных ячеек близки по значениям, как и кристаллическое строение соединений. Основное различие между двумя полиморфами заключается во F···F взаимодействиях, которые изменяют взаимную ориентацию соседних стопок в кристаллах. В триклинном полиморфе наблюдаются трёхцентровые F···F взаимодействия, а в моноклинном полиморфе присутствуют только двухцентровые контакты. Присутствие двух полиморфов было также доказано методом дифференциальной сканирующей калориметрии.

Методом дифференциальной импульсной и циклической вольтамперометрии показано, что молекула тетрацена является более сильным донором, чем молекула антрацена. Перенос заряда подтвержден методом электронной спектроскопии: в спектрах обоих комплексов были обнаружены характерные широкие полосы переноса заряда, отсутствующие в спектрах отдельных компонентов (рис.4). Ширина запрещенной зоны для комплекса антрацен/PFAQ примерно равна 1.8 эВ, для комплекса тетрацен/PFAQ – 1.6 эВ.

Заметным отличием является отсутствие смещения полос электронного спектра антрацена в комплексе по сравнению со спектром в индивидуальном веществе, что указывает на незначительное изменение электронной структуры антрацена при образовании комплекса. В комплексе тетрацена, в свою очередь, наблюдается высокочастотный сдвиг по сравнению со спектром индивидуального соединения.



**Рисунок 4**. Электронные спектры пропускания соединений индивидуальных донора и акцептора и их комплексов для систем антрацен/PFAQ и тетрацен/PFAQ.

Квантово-химический расчёт в рамках теории «Атомы в Молекулах» Р. Бейдера для димеров донор-акцептор показал множественные связевые пути между каждой молекулой донора и акцептора, соответствующие  $\pi$ ··· $\pi$  взаимодействиям, энергия которых оценена в 3.54 ккал/моль для пары антрацен-PFAQ и 5.33 ккал/моль для димера тетрацен-PFAQ. Энергия латеральных взаимодействий С–H···O и С–H···F в расчете на одну молекулу PFAQ составляет 8.97 ккал/моль для комплекса антрацен/PFAQ, что превышает энергию  $\pi$ ··· $\pi$  взаимодействий составляет 6.15 ккал/моль. Таким образом, существует несколько типов межмолекулярных взаимодействий, определяющих кристаллическую упаковку комплекса антрацен/PFAQ. Для димеров тетрацен/PFAQ преобладающими являются  $\pi$ ··· $\pi$  взаимодействия. Величина переноса заряда была оценена равной 0.08 *е* для комплекса тетрацен/PFAQ и 0.04 *е* для комплекса антрацен/PFAQ.

#### Сокристаллы толуол/F<sub>x</sub>TCNQ

Были получены сокристаллы толуол/ $F_x$ TCNQ (x=1, 2, 4) (**4**, **5**, **6**) состава 1:1. Молекулы толуола образуют с молекулами акцептора  $F_x$ TCNQ смешанные стопки с чередованием донорных и акцепторных компонентов.

Поскольку толуол является очень слабым донором, π…π взаимодействия во всех сокристаллах малы. DFT-расчёты димеров «донор-акцептор» показали, что энергия образования комплекса не превышает 4 ккал/моль, а также были выявлены три основных супрамолекулярных мотива: при параллельной ориентации минимуму энергии соответствуют структуры, в которых фенильное кольцо толуола находится над экзоциклической или эндоциклической двойной связью акцептора; кроме того, возможна Т-образная взаимная ориентация, которая стабилизируется С– Н…π взаимодействиями.

Незначительная энергия  $\pi \cdots \pi$  взаимодействий между донорами и акцепторами в данном ряду сокристаллов проявляется в их непараллельной организации в стопках, при этом угол между плоскостями уменьшается с увеличением акцепторной способности производных TCNQ: толуол/F<sub>1</sub>TCNQ (9.4°), толуол/F<sub>2</sub>TCNQ (8.9°), а в комплексе толуол/F<sub>4</sub>TCNQ донорные и акцепторные молекулы практически параллельны (3.4°) (рис.5).

В комплексах монофтор- и дифторпроизводных смещение молекулы акцептора происходит в поперечном направлении, при этом оба этих комплекса имеют нерегулярную организацию донорных и акцепторных молекул в стопках с неэквивалентной взаимной ориентацией молекул, в комплексе толуол/F4TCNQ кольцо донора находится над экзоциклической связью акцептора, при этом две соседние с акцептором молекулы донора смещены вдоль цепи сопряжения и наблюдается эквивалентная взаимная ориентация.



Рисунок 5. Взаимная ориентация донорных и акцепторных компонентов в двух проекциях в стопках в комплексах толуола с  $F_1TCNQ$  (а),  $F_2TCNQ$  (б) и  $F_4TCNQ$  (в). Короткие контакты в стопках показаны голубыми пунктирными линиями.

В целом взаимная ориентация донорных и акцепторных компонентов в стопках совпадает с геометрией, полученной согласно DFT-расчётам, то есть несмотря на малую энергию  $\pi \cdots \pi$  взаимодействий, они вносят существенный вклад в супрамолекулярную организацию кристалла.

Кристаллическая упаковка всех сокристаллов существенно различается, что определяется наличием слабых межмолекулярных взаимодействий с участием атомов фтора и водорода, в том числе в подсистеме «акцептор-акцептор».

В сокристалле толуол/F<sub>1</sub>TCNQ формирование плоской супрамолекулярной организации молекул в кристалле определяется парными С–H…N акцептор-акцептор и донор-акцептор водородными связями.

В сокристалле толуол/F<sub>2</sub>TCNQ симметрично расположенные атомы фтора, а также малый размер молекулы донора способствуют диполь-дипольным межмолекулярным взаимодействиям полярных С–F связей и F…F взаимодействиям, при этом наблюдается ёлочная упаковка в кристалле.

В сокристалле толуол/F4TCNQ молекула акцептора взаимодействует с другими молекулами акцептора посредством F…C контактов с атомом углерода циано-группы, который несет частичный положительный заряд, и слабых F…F взаимодействий, а также с молекулами донора посредством C–H…N взаимодействий. В сокристалле наблюдается чередование слоёв из молекул доноров и акцепторов.

Квантово-химический расчёт в рамках теории «Атомы в Молекулах» Р. Бейдера для геометрии димеров донор-акцептор, полученной из эксперимента, показал аттрактивные взаимодействия между молекулами донора и акцептора, энергия которых не превышает 4 ккал/моль, а величина переноса заряда лежит в пределах 0.03-0.06*e*.

#### Сокристаллы полициклических ароматических углеводородов с F2TCNQ

Была получена серия сокристаллов антрацен/ $F_2TCNQ$  (7), тетрацен/ $F_2TCNQ$  (8) и хризен/ $F_2TCNQ$  (9) с чередованием молекул донора и акцептора в стопках в стехиометрическом соотношении 1:1.

Было показано, что донорная способность молекулы увеличивается с увеличением

протяженности π-системы в аценовом ряду (тетрацен по сравнению с антраценом), углеводороды зигзагообразного строения (хризен) проявляют меньшие донорные свойства (рис.6).

В случае линейных аценов супрамолекулярная организация определяется множественными С-Н… И и С-Н… Г латеральными взаимодействиями между водородами молекул донора и циано-группой и атомами фтора молекул акцептора, причем в сокристалле антрацен/F2TCNQ во взаимодействии участвуют атомы водорода при атомах углерода донора в положении 2 и 3, в сокристалле тетрацен/F2TCNQ – в положениях 4-7 (рис.7), что объясняет взаимную ориентацию стопок в сокристаллах: в комплексе антрацена соседние стопки повернуты примерно на 100° друг относительно друга, тогда как в комплексе тетрацена стопки параллельны между собой. Латеральные взаимодействия лежат практически в плоскости, таким образом одной формируя слоистую структуру в комплексах антрацена и тетрацена.

Расстояние между молекулами донора и 3.473(1) Å акцептора В стопках равно для сокристалла антрацен/F2TCNQ и 3.373(5) Å для комплекса тетрацена, что согласуется с более способностью молекулы высокой донорной тетрацена по сравнению с молекулой антрацена. В стопках наблюдается сдвиг молекулы акцептора вдоль длинной и короткой оси молекулы донора для сокристаллов линейных аценов, причем в случае тетрацена – вдоль обоих направлений, по причине множественных латеральных акцептор-акцептор и донор-акцептор взаимодействий.



Рисунок 6. Данные дифференциальной импульсной (красный) и циклической (черный) вольтамперометрии полициклических ароматических соединений тетрацена, антрацена и хризена, характеризующие их донорные свойства.



**Рисунок** 7. Фрагменты кристаллической упаковки, демонстрирующие слои и C–H···N и C–H···F латеральные взаимодействия в слоях в сокристаллах антрацен/ $F_2$ TCNQ (а,в) и тетрацен/ $F_2$ TCNQ (б,г)

В сокристалле хризен/F<sub>2</sub>TCNQ взаимное расположение молекул донора и акцептора в стопке по типу «кольцо над связью» оптимально для донорно-акцепторных  $\pi \cdots \pi$  взаимодействий (рис.8). Расстояние между донором и акцептором наименьшее в данной серии сокристаллов (3.313(2) Å), несмотря на меньшую донорную способность хризена по сравнению с тетраценом и антраценом. Таким образом, донорно-акцепторные  $\pi \cdots \pi$  взаимодействия в данном сокристалле

доминирующие и акцептор-акцептор взаимодействия минимальны в силу размеров молекулы хризена, которая экранирует молекулу акцептора.

Энергия межмолекулярных взаимодействий в сокристаллах полициклических ароматических углеводородов с F<sub>2</sub>TCNQ представлена в таблице 1.



**Рисунок 8**. Взаимная ориентация донора и акцептора в стопке (а), межмолекулярные взаимодействия в плоскости кольца акцептора (б) и фрагмент кристаллической упаковки соединения хризен/F<sub>2</sub>TCNQ (в).

**Таблица 1.** Энергия (ккал/моль) межмолекулярных взаимодействий в сокристаллах полициклических ароматических углеводородов с F<sub>2</sub>TCNQ (взаимодействия рассчитаны для независимой части элементарной ячейки).

| Антрацен/F2TCNQ                       | Тетрацен/F2TCNQ | Хризен/F2TCNQ |  |  |  |  |
|---------------------------------------|-----------------|---------------|--|--|--|--|
| π …π взаимодействия                   |                 |               |  |  |  |  |
| 4.70                                  | 6.06            | 6.26          |  |  |  |  |
| Акцептор-акцептор взаимодействия      |                 |               |  |  |  |  |
| 4.33                                  | 5.59            | 3.89          |  |  |  |  |
| Донор-акцептор боковые взаимодействия |                 |               |  |  |  |  |
| 7.38                                  | 5.62            | 7.32          |  |  |  |  |
| Донор-донор взаимодействия            |                 |               |  |  |  |  |
| 2.08                                  | 4.69            | 6.26          |  |  |  |  |

Для оценки энергетического зазора ВЗМО–НСМО (ширины запрещенной зоны) в серии комплексов с F<sub>2</sub>TCNQ для порошкового образца были сняты электронные спектры в диапазоне 0.5-4 эВ (рис.9).

Комплексы с F<sub>2</sub>TCNQ имеют выраженные полосы переноса заряда. Наименьший максимум полосы переноса заряда расположен при примерно 0.9 эВ для комплекса тетрацен/F<sub>2</sub>TCNQ, для комплексов антрацен/F<sub>2</sub>TCNQ и хризен/F<sub>2</sub>TCNQ – в районе 1.4-1.5 эВ, ширина запрещенной зоны равна примерно 0.6, 1.0 и 0.9 эВ для комплексов тетрацена, антрацена и хризена соответственно.

Были проведены DFT-расчёты зонной структуры кристаллов комплексов  $F_2TCNQ$  с антраценом, тетраценом и хризеном. Следует отметить, что оптимизированные кристаллические структуры не имеют существенных отклонений от экспериментальной геометрии. Сокристалл тетрацен/ $F_2TCNQ$  демонстрирует необычную электронную структуру вблизи уровня Ферми (рис.9). В точке Г эта система представляет собой узкозонный полупроводник, еще более необычным является то, что вершина валентной зоны смещена в точку Y, а нижние значения зоны проводимости – в точку V, и они почти вырождены, что предполагает непрямой перенос заряда. В то же время комплексы антрацен/ $F_2TCNQ$  и хризен/ $F_2TCNQ$  имеют более традиционную структуру энергетических уровней с наименьшими промежутками в точках Г и Y соответственно.

Величина переноса заряда была оценена по сдвигу частоты C≡N колебаний акцептора (рис.10), по изменению геометрии акцептора и рассчитана различными методами (таблица 2).

Разные методы оценки величины переноса заряда дают разные значения, однако большинство подходов дают больший перенос заряда для комплекса тетрацен/F<sub>2</sub>TCNQ.

Оценка оптимальных ориентаций донорных и акцепторных молекул, связанных π…π взаимодействиями, была выполнена с помощью оптимизации геометрии пар доноракцептор. DFT-расчёт димера хризен-F<sub>2</sub>TCNQ показал взаимную ориентацию донор-акцептор, которая совпадает с ориентацией хризена и F<sub>2</sub>TCNQ, наблюдаемой в сокристалле. Для димеров антрацен- $F_2$ TCNQ и тетрацен- $F_2$ TCNQ наблюдается расхождение оптимизированной и экспериментально наблюдаемой геометрии, что показывает влияние латеральных взаимодействий.





Рисунок 10. ИК спектры в диапазоне колебания связи CN F<sub>2</sub>TCNQ и его комплексов с антраценом, тетраценом и хризеном



**Рисунок 9**. UV/VIS/NIR спектры поглощения соединений (а) зонная электронная структура и плотность электронных состояний (б) (С(р-оболочка), F(р-оболочка), N(р-оболочка)) оцененная на уровне DFT/PBE/PAW комплекса тетрацен/F<sub>2</sub>TCNQ.

**Таблица 2**. Результаты оценки величины переноса заряда (e) в сокристаллах полициклических ароматических соединений антрацена, тетрацена и хризена с  $F_2$ TCNQ.

| Метод                  | Антрацен<br>/F <sub>2</sub> TCNQ | Тетрацен<br>/F <sub>2</sub> TCNQ | Хризен<br>/F <sub>2</sub> TCNQ |  |  |
|------------------------|----------------------------------|----------------------------------|--------------------------------|--|--|
| По геометрии акцептора | 0.00                             | 0.19                             | 0.13                           |  |  |
| $\Delta v(C \equiv N)$ | 0.13                             | 0.15                             | 0.18                           |  |  |
| Заряд по Р. Бейдеру    |                                  |                                  |                                |  |  |
| PAW/PBE                | 0.25                             | 0.37                             | 0.23                           |  |  |
| PAW/B3LYP              | 0.18                             | 0.30                             | 0.19                           |  |  |
| wB97X/pob-TZVP-rev2    | 0.24                             | 0.30                             | 0.30                           |  |  |

Далее была проведена оптимизация кристаллических структур исследуемых соединений для оценки общего энергетического баланса и характера нековалентных взаимодействий с помощью программы CRYSTAL с дальнейшим топологическим анализом нековалентных взаимодействий в рамках теории Р. Бейдера. Показано, что для самого слабого донора в сокристалле хризен/ $F_2TCNQ$  энергия  $\pi \cdots \pi$  и донор-донор взаимодействий максимальна, а акцептор-акцептор взаимодействий — минимальна в исследуемой серии сокристаллов полициклических ароматических углеводородов с  $F_2TCNQ$  (таблица 1).

Топологические свойства в критических точках связи нековалентных межмолекулярных взаимодействий в этом ряду сокристаллов указывают на то, что все контакты описываются как взаимодействия по типу закрытой оболочки. Разрежение электронной плотности при атоме водорода направлено в сторону неподеленной электронной пары атома азота соседней молекулы акцептора (рис.11), что свидетельствует о направленной электростатической природе водородных связей C(sp<sup>2</sup>)–H…N=C. В случае  $\pi$ … $\pi$  взаимодействий показано, что аккумуляция электронной плотности «сверху» и «снизу» кратных связей молекулы акцептора направлена в области разрежения электронной плотности на ароматических кольцах молекулы донора (рис.11).



**Рисунок 11**. Контурные карты статической деформационной электронной плотности, демонстрирующие водородную связь (а) и  $\pi \cdots \pi$  взаимодействия в сокристалле тетрацен/F<sub>2</sub>TCNQ (б) и в сокристалле хризен/F<sub>2</sub>TCNQ (в). Шаг контура равен 0.01 а.u. Положительные, нулевые и отрицательные контуры показаны синим, зеленым и красным.

С целью исследования природы взаимодействий между молекулой тетрацена и молекулой F4TCNQ и распределения экспериментальной электронной плотности в сокристалле тетрацен/F4TCNQ (10) был проведен прецизионный рентгеноструктурный эксперимент высокого разрешения. По результатам эксперимента установлено, что распределение деформационной электронной плотности молекулы донора имеет признаки, характерные для ароматических систем, с небольшим изменением аккумуляции электронной плотности в областях ароматических связей С–С в соответствии с чередованием длин связей. Молекула акцептора обладает всеми характеристиками хинона, что указывает на небольшую величину переноса заряда в сокристалле.

Как и ожидалось, относительно высокая аккумуляция электронной плотности наблюдается в областях хиноновых эндо- и экзоциклических двойных связей, а также между атомами азота и углерода тройных связей. В целом распределение электронной плотности и свойства лапласиана электронной плотности для всех ковалентных связей соответствуют взаимодействиям с обобществленной оболочкой, кроме связи С–F, которая имеет сильно полярный характер с областью разрежения электронной плотности на линии связи.

Анализ приведенного градиента электронной плотности показал наличие множественных связывающих нековалентных взаимодействий: внутримолекулярные взаимодействия С…F,  $\pi$ … $\pi$  взаимодействия и слабые водородные связи С–H…F и С–H…N. Энергия (на одну акцепторную молекулу)  $\pi$ … $\pi$  взаимодействий оценена примерно в 11.3 ккал/моль, латеральных С–H…N и С–F…H взаимодействий – 11.4 ккал/моль, 5.1 ккал/моль соответственно. Все нековалентные взаимодействия являются взаимодействиями по типу закрытой оболочки.

Наличие переноса заряда было подтверждено методом UV/VIS/NIR спектроскопии (рис.12). В спектре сокристалла тетрацен/F<sub>4</sub>TCNQ наблюдаются несколько пиков поглощения при энергиях примерно равных 0.8 эВ, 1.0 эВ, 1.4 эВ, отсутствующих в спектрах индивидуальных донора и акцептора.



**Рисунок 12**. UV/VIS/NIR и ИК спектры индивидуальных соединений тетрацен (черный), F<sub>4</sub>TCNQ (красный) и сокристалла тетрацен/F<sub>4</sub>TCNQ (синий).

Величина переноса заряда оценена по ИК-спектру комплекса, в котором наблюдается смещение частоты C=N колебаний акцептора в длинноволновую область, и равняется 0.14*e*, по экспериментальному распределению электронной плотности путем интегрирования электронной плотности по объему атомных бассейнов V( $\Omega$ ), из величины атомного заряда на валентной оболочке атома  $q_{P_{val}}$ , полученной из мультипольной модели и по изменению геометрии акцептора, и равняется 0.26*e*, 0.24*e* и 0.09-0.10*e* соответственно.

# Молекулярная и кристаллическая структура кристаллов на основе фталоцианина марганца MnPc и TCNQ и F4TCNQ.

При смешении фталоцианина марганца и F<sub>4</sub>TCNQ/TCNQ в зависимости от растворителя были получены различные кристаллы, причём кристаллизация сопровождалась химическими превращениями как молекул донора, так и акцептора.

Кристаллизация в N-метил-2-пирролидоне (NMP) привела к двум типам кристаллов (11) и (12) (схема 1). Соединение (11) имеет солевую структуру, состоящую из фталоцианина марганца Mn<sup>III</sup>Pc, координированного 4-(дицианометанидо)тетрафтор-бензоат дианионом (рис.13) и катиона Mn<sup>III</sup>Pc, координированного двумя молекулами воды.

В независимой части элементарной ячейки присутствуют еще 5 молекул NMP. Геометрия акцепторного лиганда указывает на его преобразование из исходной хиноновой ароматический бензольный структуры В фрагмент. Соседние фталоцианиновые фрагменты анионов связаны π…π взаимодействиями,  $C – H \cdots N$  $C-H\cdots\pi$ И взаимодействиями, анион и катион связаны С-H····O, H···Н и π···π взаимодействиями, одна молекула растворителя образует очень слабую координационную связь ионом Mn с (расстояние  $Mn{\cdots}O$ 2.611(8) Å), равно препятствуя аксиальной координации иона Mn<sup>III</sup> молекулой воды.



Рисунок 13. Молекулярная структура аниона комплекса (11).



Схема 1. Реакция фталоцианина марганца MnPc с TCNQ и F4TCNQ.

Соединение (12) представляет собой комплекс, состоящий из двух фрагментов Mn<sup>III</sup>Pc, каждый из которых координирован молекулой воды в одном аксиальном положении, а между собой соединены мостиковым 4-(дицианометанидо)тетрафторбензоат дианионом. В независимой части элементарной ячейки также находятся четыре молекулы растворителя NMP и одна молекулы воды.

Молекула акцептора соединяет два фталоцианиновых фрагмента Mn<sup>III</sup>, причем все три

ароматических фрагмента почти параллельны. Два фталоцианиновых фрагмента в кристалле (12) имеют практически оптимальную для эффективного взаимодействия ориентацию по типу «кольцо над связью» (рис. 14а), наименьший торсионный угол N-Mn-Mn–N равен 42.5(3)°. Таким образом, полученный комплекс подтверждает, что 4-(дицианометанидо)тетрафторбензоатный лиганд можно использовать в качестве хорошего мостикового звена для конструирования одномерных координационных полимеров, состоящих из параллельных ароматических фрагментов.

Сольватные молекулы посредством водородных связей участвуют в образовании супрамолекулярных 1D цепочек (рис. 14б). Соседние цепочки взаимопроникают друг в друга изза чередующейся ориентации мостиковых дианионов в цепочке и множественных С–H…F взаимодействий.



**Рисунок 14**. Молекулярная (а) и супрамолекулярная структура комплекса (**12**) (б). Растворители показаны синими, водородные связи показаны голубыми линиями.

Таким образом, соединения (11) и (12) образуются при взаимодействии MnPc и F<sub>4</sub>TCNQ в соотношении 2:1 и приводят к образованию комплексов Mn<sup>III</sup>. Комплекс (12) термодинамически более устойчив. Комплекс (11) превращается во второй тип (12) при длительном стоянии или нагреве.

Косвенным доказательством процесса замещения двух циано-групп при превращении F<sub>4</sub>TCNQ в 4-(дицианометанидо)тетрафторбензоат дианион является образование комплекса (**13**), полученного в результате реакции MnPc и F<sub>4</sub>TCNQ в 1,3-Диметил-3,4,5,6-тетрагидро-2(1H)-пиримидиноне (DMPU).

В ходе реакции между  $Mn^{II}Pc$  и TCNQ или F<sub>4</sub>TCNQ в смеси 1:1 растворителей DMPU и N,N-диметилацетамид (DMAc) или самого DMAc были получены 2 комплекса с одноэлектронным переносом заряда, которые состоят из фталоцианина марганца  $Mn^{III}Pc \cdot 2H_2O$ , координированного водой и анион-радикалов TCNQ<sup>-</sup> (**14**, **15**) или F<sub>4</sub>TCNQ<sup>-</sup> (**16**) каждый в стехиометрическом соотношении 1:1. Это первые сокристаллы фталоцианина металла с TCNQ и его производными.

Координированные молекулы воды препятствуют  $\pi \cdots \pi$  взаимодействиям фталоцианинов. В комплексах реализуются С–Н $\cdots \pi$  взаимодействия с близкой к ортогональной взаимной ориентацией молекул донора и акцептора. Несмотря на похожее расположение, в двух кристаллах есть существенные различия, связанные с межмолекулярными взаимодействиями с участием атомов фтора.

Молекула TCNO<sup>--</sup> в кристалле (14) плоская И расположена ортогонально фталоцианиновым фрагментам катионов Mn<sup>III</sup>Pc·2H<sub>2</sub>O. Угол между среднеквадратичной плоскостью MnPc и кольца молекулы TCNQ равен 90.5(1)°. При этом взаимодействия реализуются между периферическими атомами водорода фталоцианина марганца и областями TCNQ<sup>--</sup>, где накапливается максимальная электронная плотность. В кристалле (16) наблюдаются множественные контакты между атомами фтора и периферическими атомами углерода катионов Мп<sup>Ш</sup>Рс·2Н2О, а также С-Н··· т взаимодействий с л-системой цианогрупп. В результате цианогруппы в анионе F4TCNQ<sup>--</sup> выходят из плоскости кольца, угол между среднеквадратичной плоскостью кольца F<sub>4</sub>TCNQ<sup>--</sup> и плоскостью дицианометанидной группы равен 14.6(2)°. В кристалле (16) двугранный угол между среднеквадратичной плоскостью кольца F<sub>4</sub>TCNO<sup>-</sup> и плоскостью фталоцианинового фрагмента MnPc равен 62.3(1)°. Следует отметить, что аналогичная кристаллическая структура наблюдается в кристалле (15), который является сольватом DMAc. Таким образом, следует, что вышеописанное расположение ионов в сокристаллах MnPc·2H<sub>2</sub>O/TCNQ<sup>•-</sup> воспроизводится независимо от растворителя.



**Рисунок 15**. Циклические вольтамперограммы TCNQ (а), F<sub>4</sub>TCNQ (б), MnPc (в), комплекс (**12**) (г), комплекс (**14**) (д).

были Нами изучены твердотельные электрохимические И магнитные свойства соединений (12) и (14). Для обоих образцов были обнаружены необычные окислительновосстановительные свойства, которые значительно отличаются от свойств исходных соединений  $Mn^{II}Pc$ , TCNQ и F<sub>4</sub>TCNQ (рис.15). Соединение (12) способно обратимо принимать 7 электронов и отдавать один электрон, соединение (14) способно обратимо принять 5 электронов и отдать один электрон.

Для исследования магнитных свойств комплексов (12) и (14) были проведены измерения

статической намагниченности М и электронного парамагнитного резонанса (ЭПР).

Анализ температурной зависимости магнитной восприимчивости (рис.16) показал, что в

результате переноса заряда в комплексах (12) и (14) происходит изменение степени окисления с  $Mn^{II}$  на  $Mn^{III}$ , что приводит к увеличению значения спина от S = 3/2 до S = 2 и соответствующему 4увеличению магнитного момента металла. Кроме мостиковый иона того, (дицианометанидо)тетрафторбензоат в комплексе (12)обеспечивает дианион путь антиферромагнитного взаимодействия между двумя ионами Mn<sup>III</sup> в молекуле димера.



**Рисунок 16**. Температурная зависимость статической магнитной восприимчивости  $\chi(T) = M(T)/H$  и соответствующей обратной восприимчивости  $\chi^{-1}(T)$ . комплекса (12) (а) и комплекса (14) (б). Сплошная черная линия представляет собой аппроксимацию экспериментальных данных закону Кюри–Вейсса. Фиолетовые точки в (а) относится к вкладу непрореагировавших молекул Mn<sup>II</sup>Pc. Вставка в (б) – зависимость статической намагниченности M от магнитного поля при T = 1.8 K.

ЭПР спектроскопия комплексов (12) и (14) при температуре T = 20 К подтвердила образование комплексов иона марганца  $Mn^{III}$  и наличие анион-радикала для комплекса (14). Набор резонансных ветвей, расщепленных в нулевом поле для комплекса (12), соответствуют высокоспиновому состоянию S=2 иона  $Mn^{III}$  (рис.17а), резонансные ветви 1 и 2 (рис.17б) представляют собой типичный спектр ЭПР спиновой системы с S=2 с большой отрицательной одноосной магнитной анизотропией при параллельной ориентации к внешнему магнитному полю, где линия 2 имеет термоактивационную природу, линия 3 относится к анион-радикалу с S=1/2.



Рисунок 17. Диаграмма зависимости частоты от резонансного магнитного поля и спектр ЭПР, измеренные при T=20K (а): комплекс (12), частота возбуждения 252 ГГц (красная линия) (б):комплекс (14), частоты возбуждения 360 и 472 ГГц (синяя и бирюзовая линии). Прямые линии (резонансные ветви) представляют собой линейную экстраполяцию экспериментальных данных.

Перенос одного электрона в комплексах (14), (15) и (16) также подтверждается ИКспектроскопией.



<sup>2</sup> **<sup>2</sup> Рисунок 18**. ИК-спектр сокристаллов Mn<sup>III</sup>Pc·2H<sub>2</sub>O/TCNQ<sup>•–</sup> и Mn<sup>III</sup>Pc·2H<sub>2</sub>O/F<sub>4</sub>TCNQ<sup>•–</sup> в области колебаний цианогруппы ((14), (15), (16) снизу вверх).

Полосы v(C=N) в спектрах кристалла (14) и (15) очень похожи (рис.18), что соответствует их сходной кристаллической структуре. Частоты v(C=N) во всех кристаллах хорошо согласуются со спектрами солей комплексов с переносом заряда с анионами TCNQ<sup>--</sup> и F<sub>4</sub>TCNQ<sup>--</sup>, в которых окислительновосстановительное состояние TCNQ или F<sub>4</sub>TCNQ определено однозначно.

Величина переноса заряда оценена по изменению геометрии молекулы акцептора и составила 0.90(6)–1.65(6) е.

#### ЗАКЛЮЧЕНИЕ

1. Установлена структура ряда новых сокристаллов с переносом заряда, полученных на основе ароматических углеводородов (толуола, антрацена, тетрацена, хризена) и фторзамещенных производных тетрацианохинодиметана ( $F_{X}TCNQ$ , x = 1, 2, 4), а также перфторантрахинона (PFAQ). Показано, что молекулы донора и акцептора в сокристаллах образуют чередующиеся стопки, при этом величина переноса заряда в данных системах равна 0.04-0.30 е. Супрамолекулярная организация кристаллов в большей степени зависит от относительных размеров используемых компонентов, а не от их донорной и акцепторной способности:

- в случае превосходящих размеров донорных молекул (тетрацен/PFAQ, хризен/F<sub>2</sub>TCNQ) относительная ориентация молекул в стопках определяется π…π взаимодействиями и соответствует оптимальной для них структуре в стопках «кольцо над связью»;

- в кристаллах, в которых размеры молекул донора меньше, чем размеры молекул акцептора (толуол/ $F_X$ TCNQ (x = 1, 2, 4), антрацен/ $F_2$ TCNQ) доминируют латеральные акцептор-акцептор взаимодействия, влияющие на относительную ориентацию компонентов в стопках, при этом кристаллическая структура зависит от числа атомов фтора.

- при соизмеримых размерах молекул донора и акцептора (антрацен/PFAQ) реализуются множественные латеральные взаимодействия, которые приводят к появлению полиморфных сокристаллов, различающихся типом F…F контактов.

2. На основе анализа распределения теоретической и экспериментальной статической деформационной электронной плотности в сокристаллах антрацен/F<sub>2</sub>TCNQ, тетрацен/F<sub>2</sub>TCNQ, хризен/F<sub>2</sub>TCNQ и тетрацен/F<sub>4</sub>TCNQ показано, что направленность латеральных взаимодействий определяется взаимодействиями неподелённых электронных пар атомов азота и фтора с областями разрежения электронной плотности на атомах водорода. Распределение деформационной электронной плотности на экзоциклических С=С и С=N связях молекулы акцептора

соответствует π<sup>…</sup>π взаимодействиям по типу «ключ-замок»: области положительной и отрицательной деформационной электронной плотности направлены друг на друга.

3. Показано, что при взаимодействии фталоцианина марганца(II) с тетрацианохинодиметаном и его перфторированным производным образуются комплексы, в которых ион марганца имеет степень окисления III, и находится в высокоспиновом состоянии S = 2:

- при использовании в качестве среды N,N-диметилацетамида или его смеси с 1,3-диметил-3,4,5,6-тетрагидро-2(1H)-пиримидиноном впервые были получены сокристаллы диаквафталоцианина марганца (Mn<sup>III</sup>Pc·2H<sub>2</sub>O) с анион-радикалами тетрацианохинодиметанов TCNQ<sup>•-</sup> и F<sub>4</sub>TCNQ<sup>•-</sup> состава 1:1 за счёт переноса одного электрона. Их супрамолекулярная организация определяется C-H···π взаимодействиями, при этом наблюдается близкая к ортогональной взаимная ориентации катионов и анионов.

- при использовании N-метил-2-пирролидона происходит образование нового 4-(дицианометанидо)тетрафторбензоат дианиона с переносом двух электронов и последовательная кристаллизация комплекса состава 2:1 с ортогональной монодентатной координацией дианиона с ионом марганца, и термодинамически стабильного димерного комплекса с параллельной ориентацией двух фталоцианиновых фрагментов и дианиона тетрафторбензоата, являющегося мостиковым и обеспечивающим антиферромагнитное взаимодействие между ионами марганца.

**Перспективы дальнейшей разработки темы.** Выявленные в результате работы закономерности, а именно: зависимости между топологией молекул, межмолекулярными взаимодействиями и их природой, супрамолекулярной организацией молекул, величиной переноса заряда и физическими свойствами сокристаллов на основе ароматических органических и металлсодержащих соединений и хиноновых производных, предоставляют фундаментальные знания о связи структура-свойства. Полученные результаты показывают, с одной стороны, возможности расширения границ применения сокристаллов, а с другой стороны, позволяют сделать осознанный выбор донорных и акцепторных молекул для целенапраленного дизайна материалов на основе сокристаллов с оптимальными свойствами.

#### Основное содержание диссертации изложено в следующих публикациях:

1. Kataeva, O. Electron Transfer and Unusual Chemical Transformations of F<sub>4</sub>-TCNQ in a Reaction with Mn-Phthalocyanine / O. Kataeva, K. Metlushka, **K. Ivshin**, A. Kiiamov, V. Alfonsov, M. Khrizanforov, Y. Budnikova, O. Sinyashin, Y. Krupskaya, V. Kataev, B. Büchner, M. Knupfer // Eur J Inorg Chem. – 2018. – Vol. 2018. – № 28. – P. 3344-3353.

2. Kataeva, O. An unusual donor–acceptor system  $Mn^{II}Pc$ -TCNQ/F<sub>4</sub>-TCNQ and the properties of the mixed single crystals of metal phthalocyanines with organic acceptor molecules / O. Kataeva, K. Metlushka, **K. Ivshin**, K. Nikitina, V. Alfonsov, A. Vandyukov, M. Khrizanforov, Y. Budnikova, O. Sinyashin, Y. Krupskaya, V. Kataev, B. Büchner, M. Knupfer // Dalton Trans. – 2019. – Vol. 48. –  $N_{2}$  46. – P. 17252-17257.

3. Kataeva, O. Charge-Transfer Complexes of Linear Acenes with a New Acceptor Perfluoroanthraquinone. The Interplay of Charge-Transfer and F…F Interactions / O. Kataeva, **K. Ivshin**, K. Metlushka, S. Latypov, K. Nikitina, D. Zakharychev, A. Laskin, V. Alfonsov, O. Sinyashin, E. Mgeladze, A. Jäger, Y. Krupskaya, B. Büchner, M. Knupfer // Crystal Growth & Design.  $-2019. - Vol. 19. - N_{\odot} 9. - P. 5123-5131.$ 

4. Kataeva, O. Understanding Intermolecular Interactions in a Tetracene–F 4 TCNQ Cocrystal via Its Electron Density Distribution and Topology / O. Kataeva, M. Nohr, K. Ivshin, S. Hampel, B. Büchner, M. Knupfer // Crystal Growth & Design. – 2021. – Vol. 21. – № 1. – P. 471-481.

5. Kataeva, O. New Charge Transfer Cocrystals of  $F_2TCNQ$  with Polycyclic Aromatic Hydrocarbons: Acceptor–Acceptor Interactions and Their Contribution to Supramolecular Arrangement and Charge Transfer / O. Kataeva, **K. Ivshin**, K. Metlushka, K. Nikitina, V. Khrizanforova, Y. Budnikova, R.R. Fayzullin, S. Latypov, S. Schiemenz, M. Bretschneider, A. Popov, S. Avdoshenko, Y. Krupskaya, B. Büchner, M. Knupfer // Crystal Growth & Design. – 2022. – Vol. 22. – New Charge Transfer Cocrystals of  $F_2TCNQ$  with Polycyclic Aromatic Hydrocarbons. – Nº 1. – P. 751-762.

6. **Ившин, К.А.** Нековалентные взаимодействия в слабых донорно-акцепторных системах на основе толуола и производных тетрацианохинодиметана // К.А. Ившин, А.П. Федонин, Р.Г. Зиннатуллин, К.Е. Метлушка, Ш.К. Латыпов, О.Н. Катаева // Журнал общей химии. – 2022 – Т.92. – С. 1826-1834.

7. **Ившин, К.А.** Новые комплексы с переносом заряда на основе фталоцианина марганца / К.А. Ившин, О.Н. Катаева, К.Е. Метлушка, В.А. Альфонсов, М.Н. Хризанфоров, Ю.Г. Будникова, О.Г. Синяшин, Ю. Крупская, В. Катаев, Б. Бюхнер, М. Кнупфер // Тезисы IX Национальной кристаллохимической конференции. Суздаль, 4–8 июня, 2018. – С. 150.

8. **Ivshin, K.A.** Charge transfer complexes of linear acenes with a new acceptor perfluoroanthraquinone. the interplay of charge transfer and F…F interaction / O. Kataeva, K. Ivshin, K. metlushka, S. Latypov, K. Nikitina, D. Zakharychev, A. Laskin, V. Alfonsov, O. Sinyashin, E. Mgeladze, A. Jager, Y. Krupskaya, B. Buchner, M. Knupfer // Book of abstracts XI International Conference on Chemistry for Young Scientists. Saint-Peterburg, 09-13 сентября, 2019. – C. 270.

9. **Ivshin, K.** Understanding intermolecular interactions in co-crystal of tetracene-F<sub>4</sub>TCNQ via electron density distribution and its topology / K. Ivshin, O. Kataeva, M. Nohr, S. Hampel, B. Buchner, M. Knupfer // Тезисы докладов II Научная конференция "Динамические процессы в химии элементоорганических соединений", посвященная 75-летию ИОФХ им. А.Е. Арбузова и Казанского научного центра РАН. Казань, 11-13 ноября, 2020. – С. 56.

10. **Ившин, К.** Исследование межмолекулярных взаимодействий в сокристалле тетрацен-F<sub>4</sub>TCNQ посредством топологического анализа распределения экспериментальной электронной плотности / К. Ившин, О. Катаева, М. Нор, С. Хампел, Б. Бюхнер, М. Кнупфер // Тезисы Х Национальной кристаллохимической конференции. Приэльбрусье, 5–9 июля, 2021. – С. 142.

11. **Ившин, К.** Новые комплексы с переносом заряда на основе полициклических ароматических углеводородов и F<sub>X</sub>TCNQ (X=2,4) / К. Ившин, К. Метлушка, Р. Зиннатуллин, К. Никитина, Ю. Крупская, М. Кнупфер, О. Катаева // Тезисы X Национальной кристаллохимической конференции. Приэльбрусье, 5–9 июля, 2021. – С. 140-141.

12. **Ившин, К.** Новые комплексы с переносом заряда на основе ароматических полициклических углеводородов и F<sub>2</sub>TCNQ: акцептор-акцептор взаимодействия и их вклад в супрамолекулярную организацию и перенос заряда / К.А. Ившин, О.Н. Катаева, К.Е. Метлушка, К.А. Никитина, В.В. Хризанфорова, Ю.Г. Будникова, Р.Р. Файзуллин, Ш.К. Латыпов, М. Кнупфер // Материалы Всероссийской научной конференции с международным участием «IV Байкальских материаловедческий форум». Улан-Удэ – оз. Байкал, 01-07 июля, 2022. – С.85.